Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 350(6261): 674-7, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542570

RESUMO

Cataracts reduce vision in 50% of individuals over 70 years of age and are a common form of blindness worldwide. Cataracts are caused when damage to the major lens crystallin proteins causes their misfolding and aggregation into insoluble amyloids. Using a thermal stability assay, we identified a class of molecules that bind α-crystallins (cryAA and cryAB) and reversed their aggregation in vitro. The most promising compound improved lens transparency in the R49C cryAA and R120G cryAB mouse models of hereditary cataract. It also partially restored protein solubility in the lenses of aged mice in vivo and in human lenses ex vivo. These findings suggest an approach to treating cataracts by stabilizing α-crystallins.


Assuntos
Catarata/tratamento farmacológico , Hidroxicolesteróis/farmacologia , Cadeia A de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/química , Amiloide/antagonistas & inibidores , Amiloide/química , Animais , Varredura Diferencial de Calorimetria , Catarata/genética , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Hidroxicolesteróis/química , Hidroxicolesteróis/uso terapêutico , Camundongos , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Cadeia A de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/genética
3.
Elife ; 42015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25962097

RESUMO

Small heat shock proteins (sHSPs) are essential 'holdase' chaperones that form large assemblies and respond dynamically to pH and temperature stresses to protect client proteins from aggregation. While the alpha-crystallin domain (ACD) dimer of sHSPs is the universal building block, how the ACD transmits structural changes in response to stress to promote holdase activity is unknown. We found that the dimer interface of HSPB5 is destabilized over physiological pHs and a conserved histidine (His-104) controls interface stability and oligomer structure in response to acidosis. Destabilization by pH or His-104 mutation shifts the ACD from dimer to monomer but also results in a large expansion of HSPB5 oligomer states. Remarkably, His-104 mutant-destabilized oligomers are efficient holdases that reorganize into structurally distinct client-bound complexes. Our data support a model for sHSP function wherein cell stress triggers small perturbations that alter the ACD building blocks to unleash a cryptic mode of chaperone action.


Assuntos
Acidose/metabolismo , Histidina/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/metabolismo , Dimerização , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Peso Molecular , Conformação Proteica
4.
Proc Natl Acad Sci U S A ; 108(16): 6409-14, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21464278

RESUMO

The small heat shock protein (sHSP) αB-crystallin (αB) plays a key role in the cellular protection system against stress. For decades, high-resolution structural studies on heterogeneous sHSPs have been confounded by the polydisperse nature of αB oligomers. We present an atomic-level model of full-length αB as a symmetric 24-subunit multimer based on solid-state NMR, small-angle X-ray scattering (SAXS), and EM data. The model builds on our recently reported structure of the homodimeric α-crystallin domain (ACD) and C-terminal IXI motif in the context of the multimer. A hierarchy of interactions contributes to build multimers of varying sizes: Interactions between two ACDs define a dimer, three dimers connected by their C-terminal regions define a hexameric unit, and variable interactions involving the N-terminal region define higher-order multimers. Within a multimer, N-terminal regions exist in multiple environments, contributing to the heterogeneity observed by NMR. Analysis of SAXS data allows determination of a heterogeneity parameter for this type of system. A mechanism of multimerization into higher-order asymmetric oligomers via the addition of up to six dimeric units to a 24-mer is proposed. The proposed asymmetric multimers explain the homogeneous appearance of αB in negative-stain EM images and the known dynamic exchange of αB subunits. The model of αB provides a structural basis for understanding known disease-associated missense mutations and makes predictions concerning substrate binding and the reported fibrilogenesis of αB.


Assuntos
Modelos Moleculares , Multimerização Proteica , Cadeia B de alfa-Cristalina/química , Animais , Humanos , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
5.
Nat Struct Mol Biol ; 17(9): 1037-42, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20802487

RESUMO

The small heat shock protein alphaB-crystallin (alphaB) contributes to cellular protection against stress. For decades, high-resolution structural studies on oligomeric alphaB have been confounded by its polydisperse nature. Here, we present a structural basis of oligomer assembly and activation of the chaperone using solid-state NMR and small-angle X-ray scattering (SAXS). The basic building block is a curved dimer, with an angle of approximately 121 degrees between the planes of the beta-sandwich formed by alpha-crystallin domains. The highly conserved IXI motif covers a substrate binding site at pH 7.5. We observe a pH-dependent modulation of the interaction of the IXI motif with beta4 and beta8, consistent with a pH-dependent regulation of the chaperone function. N-terminal region residues Ser59-Trp60-Phe61 are involved in intermolecular interaction with beta3. Intermolecular restraints from NMR and volumetric restraints from SAXS were combined to calculate a model of a 24-subunit alphaB oligomer with tetrahedral symmetry.


Assuntos
Estrutura Quaternária de Proteína , Cadeia B de alfa-Cristalina/química , Sítios de Ligação , Técnicas de Química Analítica , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular
6.
Cell ; 141(4): 645-55, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20478255

RESUMO

The Escherichia coli fimbrial adhesive protein, FimH, mediates shear-dependent binding to mannosylated surfaces via force-enhanced allosteric catch bonds, but the underlying structural mechanism was previously unknown. Here we present the crystal structure of FimH incorporated into the multiprotein fimbrial tip, where the anchoring (pilin) domain of FimH interacts with the mannose-binding (lectin) domain and causes a twist in the beta sandwich fold of the latter. This loosens the mannose-binding pocket on the opposite end of the lectin domain, resulting in an inactive low-affinity state of the adhesin. The autoinhibition effect of the pilin domain is removed by application of tensile force across the bond, which separates the domains and causes the lectin domain to untwist and clamp tightly around the ligand like a finger-trap toy. Thus, beta sandwich domains, which are common in multidomain proteins exposed to tensile force in vivo, can undergo drastic allosteric changes and be subjected to mechanical regulation.


Assuntos
Adesinas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Adesinas de Escherichia coli/química , Regulação Alostérica , Escherichia coli/química , Proteínas de Fímbrias/química , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
7.
J Mol Biol ; 385(5): 1481-97, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19041879

RESUMO

Atomic-level structural information on alphaB-Crystallin (alphaB), a prominent member of the small heat-shock protein family, has been a challenge to obtain due its polydisperse oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on an approximately 580-kDa human alphaB assembled from 175-residue 20-kDa subunits. An approximately 100-residue alpha-crystallin domain is common to all small heat-shock proteins, and solution-state NMR was performed on two different alpha-crystallin domain constructs isolated from alphaB. In vitro, the chaperone-like activities of full-length alphaB and the isolated alpha-crystallin domain are identical. Chemical shifts of the backbone and C(beta) resonances have been obtained for residues 64-162 (alpha-crystallin domain plus part of the C-terminus) in alphaB and the isolated alpha-crystallin domain by solid-state and solution-state NMR, respectively. Both sets of data strongly predict six beta-strands in the alpha-crystallin domain. A majority of residues in the alpha-crystallin domain have similar chemical shifts in both solid-state and solution-state, indicating similar structures for the domain in its isolated and oligomeric forms. Sites of intersubunit interaction are identified from chemical shift differences that cluster to specific regions of the alpha-crystallin domain. Multiple signals are observed for the resonances of M68 in the oligomer, identifying the region containing this residue as existing in heterogeneous environments within alphaB. Evidence for a novel dimerization motif in the human alpha-crystallin domain is obtained by a comparison of (i) solid-state and solution-state chemical shift data and (ii) (1)H-(15)N heteronuclear single quantum coherence spectra as a function of pH. The isolated alpha-crystallin domain undergoes a dimer-monomer transition over the pH range 7.5-6.8. This steep pH-dependent switch may be important for alphaB to function optimally (e.g., to preserve the filament integrity of cardiac muscle proteins such as actin and desmin during cardiac ischemia, which is accompanied by acidosis).


Assuntos
Multimerização Proteica , Cadeia B de alfa-Cristalina/química , Sequência de Aminoácidos , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
8.
J Biol Chem ; 283(33): 22749-59, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18534985

RESUMO

Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular nuclear Overhauser effects. Comparison with GAF domains from PDE2A and adenylyl cyclase cyaB2 reveals a conserved overall domain fold of a six-stranded beta-sheet and four alpha-helices that form a well defined cGMP binding pocket. However, the nucleotide coordination is distinct with a series of altered binding contacts. The structure suggests that nucleotide binding specificity is provided by Asp-196, which is positioned to form two hydrogen bonds to the guanine ring of cGMP. An alanine mutation of Asp-196 disrupts cGMP binding and increases cAMP affinity in constructs containing only GAF A causing an altered cAMP-bound structural conformation. NMR studies on the tandem GAF domains reveal a flexible GAF A domain in the absence of cGMP, and indicate a large conformational change upon ligand binding. Furthermore, we identify a region of approximately 20 residues directly N-terminal of GAF A as critical for tight dimerization of the tandem GAF domains. The features of the PDE5 regulatory domain revealed here provide an initial structural basis for future investigations of the regulatory mechanism of PDE5 and the design of GAF-specific regulators of PDE5 function.


Assuntos
GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Sítios de Ligação , Dimerização , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
9.
J Biol Chem ; 283(30): 21179-86, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18480049

RESUMO

BARD1 is the constitutive nuclear partner to the breast and ovarian cancer-specific tumor suppressor BRCA1. Together, they form a heterodimeric complex responsible for maintaining genomic stability through nuclear functions involving DNA damage signaling and repair, transcriptional regulation, and cell cycle control. We report the 2.0A structure of the BARD1 ankyrin repeat domain. The structure includes four ankyrin repeats with a non-canonical C-terminal capping ankyrin repeat and a well ordered extended loop preceding the first repeat. Conserved surface features show an acidic patch and an acidic pocket along the surface typically used by ankyrin repeat domains for binding cognate proteins. We also demonstrate that two reported mutations, N470S and V507M, in the ankyrin repeat domain do not result in observable structural defects. These results provide a structural basis for exploring the biological function of the ankyrin repeat domain and for modeling BARD1 isoforms.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Supressoras de Tumor/química , Ubiquitina-Proteína Ligases/química , Sequência de Aminoácidos , Anquirinas/química , Cristalografia por Raios X/métodos , Escherichia coli/metabolismo , Evolução Molecular , Humanos , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Conformação Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Protein Sci ; 12(4): 776-83, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12649436

RESUMO

The simplified SH3 domain sequence, FP1, obtained in phage display selection experiments has an amino acid composition that is 95% Ile, Lys, Glu, Ala, Gly. Here we use NMR to investigate the tertiary structure of FP1. We find that the overall topology of FP1 resembles that of the src SH3 domain, the hydrogen-deuterium exchange and chemical shift perturbation profiles are similar to those of naturally occurring SH3 domains, and the (15)N relaxation rates are in the range of naturally occurring small proteins. Guided by the structure, we further simplify the FP1 sequence and compare the effects on folding kinetics of point mutations in FP1 and the wild-type src SH3 domain. The results suggest that the folding transition state of FP1 is similar to but somewhat less polarized than that of the wild-type src SH3 domain.


Assuntos
Domínios de Homologia de src/fisiologia , Cinética , Espectroscopia de Ressonância Magnética , Mutação , Domínios de Homologia de src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...